
www.manaraa.com

applied
sciences

Article

HPC Cloud Architecture to Reduce HPC Workflow Complexity
in Containerized Environments

Guohua Li 1 , Joon Woo 1 and Sang Boem Lim 2,*

����������
�������

Citation: Li, G.; Woo, J.; Lim, S.B.

HPC Cloud Architecture to Reduce

HPC Workflow Complexity in

Containerized Environments. Appl.

Sci. 2021, 11, 923. https://doi.org/

10.3390/app11030923

Academic Editor:

Bernabe Dorronsoro

Received: 19 November 2020

Accepted: 15 January 2021

Published: 20 January 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 National Supercomputing Center, Korea Institute of Science and Technology Information,
245 Daehak-ro, Yuseong-gu, Daejeon 34141, Korea; ghlee@kisti.re.kr (G.L.); winadia@kisti.re.kr (J.W.)

2 Department of Smart ICT Convergence, Konkuk University,
120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea

* Correspondence: sblim@konkuk.ac.kr; Tel.: +82-2-450-3840

Abstract: The complexity of high-performance computing (HPC) workflows is an important issue
in the provision of HPC cloud services in most national supercomputing centers. This complexity
problem is especially critical because it affects HPC resource scalability, management efficiency, and
convenience of use. To solve this problem, while exploiting the advantage of bare-metal-level high
performance, container-based cloud solutions have been developed. However, various problems still
exist, such as an isolated environment between HPC and the cloud, security issues, and workload
management issues. We propose an architecture that reduces this complexity by using Docker and
Singularity, which are the container platforms most often used in the HPC cloud field. This HPC
cloud architecture integrates both image management and job management, which are the two
main elements of HPC cloud workflows. To evaluate the serviceability and performance of the
proposed architecture, we developed and implemented a platform in an HPC cluster experiment.
Experimental results indicated that the proposed HPC cloud architecture can reduce complexity
to provide supercomputing resource scalability, high performance, user convenience, various HPC
applications, and management efficiency.

Keywords: HPC workflow; cloud platform; supercomputing; HPC cloud architecture; container-
ized environment

1. Introduction

Supercomputing services are currently among the most important services provided
by national supercomputing centers worldwide [1]. This designation typically refers to the
use of aggregated computing power to solve advanced computational problems related to
scientific research [2]. Most of these services are composed of cluster-based supercomputers
and are important for providing the computational resources and applications necessary
in various scientific fields [3]. These supercomputing services are often divided into high-
performance computing (HPC) services and high-throughput computing (HTC) services [4]
according to the workflow of the job. An HPC service has a strong impact on jobs that are
tightly coupled in parallel processing. These jobs (such as message passing interface (MPI)
parallel jobs) must process large numbers of computations within a short time. In contrast,
an HTC service involves independence between jobs that are loosely coupled in parallel
processing. These jobs must process large and distributed numbers of computations over a
specific period (such as a month or a year) [5].

Most national supercomputing centers are plagued with inconvenience and ineffi-
ciency in handling these types of jobs. Therefore, in this study, we focused on the current
problems facing HPC users and supercomputing center administrators seeking to provide
efficient systems. HPC users face four main problems when performing traditional HPC
jobs; these are complexity, compatibility, application expansion, and a pay-as-used arrange-

Appl. Sci. 2021, 11, 923. https://doi.org/10.3390/app11030923 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0003-3314-3887
https://doi.org/10.3390/app11030923
https://doi.org/10.3390/app11030923
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app11030923
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/2076-3417/11/3/923?type=check_update&version=2

www.manaraa.com

Appl. Sci. 2021, 11, 923 2 of 28

ment. Conversely, center administrators face five main problems with traditional HPC
systems; these are cost, flexibility, scalability, integration, and portability.

The solution to these five problems with traditional HPC is to adopt cloud computing
technology to provide HPC services in a cloud environment [6]. With the development
of cloud computing technology and the stabilization of its service, the provision of HPC
services in the cloud environment has become one of the main interests of many HPC
administrators. Many researchers have begun to enter this field, using descriptors such
as HPC over Cloud, HPC Cloud, HPC in Cloud, or HPC as a Service (HPCaaS) [7]. Al-
though these approaches solve typical scalability problems in the cloud environment and
reduce deployment and operational costs, they fail to meet high-performance require-
ments, because of the performance degradation of virtualization itself. In particular, the
performance degradation in overlay networking solutions involving Virtual Machines
(VMs) and networking virtualization has become a most serious issue. To address this,
studies are currently underway to program the fast packet processing between VMs on
the data plane using a data plane development kit [8]. Another fatal problem results from
the inflexible mobility of VM images, which include various combinations or versions
of, e.g., the operating system, compiler, library, and HPC applications. Thus, the biggest
challenge to HPC administrators is to achieve scalability of the cloud, performance, and
image service in virtual situations.

One solution to overcome this challenge is to implement an HPC cloud in a con-
tainerized environment. Integrating the existing HPC with a containerized environment
leads to complexity in terms of designing the HPC workflow, which is defined as the
flow of tasks that need to be executed to compute on HPC resources. The diversity of
these tasks increases the complexity of the infrastructure to be implemented. We defined
some requirements of an HPC workflow in a containerized environment and compared
them with those of other projects such as Shifter [9], Sarus [10], EASEY [11], and JEDI [12],
which are suggested by several national supercomputing centers. It is difficult to design
an architecture that includes all functionalities that satisfy the requirements of users and
administrators on the basis of these related research analyses.

In this study, we proposed an HPC cloud architecture that can reduce the complexity
of HPC workflows in containerized environments to provide supercomputing resources
scalability, high performance, user convenience, various HPC applications, and manage-
ment efficiency. To evaluate the serviceability of our proposed architecture, we developed a
platform that was part of the Partnership and Leadership of Supercomputing Infrastructure
(PLSI) project [13] led by the Korean National Supercomputing Center, Korea Institute
of Science and Technology Information (KISTI), and built a test bed based on the PLSI
infrastructure. In addition, we developed a user-friendly platform that is easy to use and
uses a minimal knowledge base interface to ensure user convenience.

The reminder of this paper is organized as follows: In Section 2, we describe re-
lated work on container-based HPC cloud solutions involving national supercomputing
resources. In Section 3, the platform implemented is explained and information about
system architecture and workflows is included, and the detailed method is described in
Section 4. In Section 5, we present the results of evaluation applied to various aspects of
the platform we developed. Finally, we provide concluding remarks in Section 6.

2. Related Work

To propose an HPC cloud architecture in a containerized environment, we first an-
alyzed container solutions such as Docker [14], Singularity [15], and Charliecloud [16]
that are suitable for an HPC cluster environment. Projects such as Shifter [9], Sarus [10],
EASEY [11], and JEDI [12] provide HPC cloud services based on these container-based
solutions. In these projects, we analyzed the HPC workflow from an architectural per-
spective. Next, we defined several requirements of the HPC workflow in a containerized
environment and compared each of the projects with the proposed architecture.

www.manaraa.com

Appl. Sci. 2021, 11, 923 3 of 28

2.1. Container Solutions
2.1.1. Docker

Docker is a lightweight container technology that easily bundles and runs libraries,
packages, and applications in an isolated environment. Compared with VM-based virtual-
ization technology, Docker is an isolation technology that shares the resources of the host
to provide better performance than that of a VM. Nevertheless, the following problems
exist in the HPC cluster environment with Docker technology [14]:

• Docker is not well integrated with other workload managers.
• It does not isolate users on shared file systems.
• Docker is designed without consideration of clients who do not have a local disk.
• The Docker network is a bridge type by default. Thus, to enable communication on

multiple hosts, another overlay network solution is required.

2.1.2. Singularity

Singularity, which is a new container technology with a format different from that
of the Docker image, was introduced in 2016 for the development of HPC services [15]
for solving these problems. Singularity can be integrated with any resource manager on
the host. For example, it is feasible to integrate it with resource managers such as HPC
interconnects, scheduler, file system, and Graphics Processing Units (GPUs). Singularity
also focuses on container mobility and can be run in any workload with no modification
to any host. To provide a deeper understanding of the technology that implements this
function, the architecture of the VM, Docker container, and Singularity are compared in
Figure 1 [17].

Appl. Sci. 2021, 11, x FOR PEER REVIEW 3 of 27

2.1. Container Solutions
2.1.1. Docker

Docker is a lightweight container technology that easily bundles and runs libraries,
packages, and applications in an isolated environment. Compared with VM-based virtu-
alization technology, Docker is an isolation technology that shares the resources of the
host to provide better performance than that of a VM. Nevertheless, the following prob-
lems exist in the HPC cluster environment with Docker technology [14]:
• Docker is not well integrated with other workload managers.
• It does not isolate users on shared file systems.
• Docker is designed without consideration of clients who do not have a local disk.
• The Docker network is a bridge type by default. Thus, to enable communication on

multiple hosts, another overlay network solution is required.

2.1.2. Singularity
Singularity, which is a new container technology with a format different from that of

the Docker image, was introduced in 2016 for the development of HPC services [15] for
solving these problems. Singularity can be integrated with any resource manager on the
host. For example, it is feasible to integrate it with resource managers such as HPC inter-
connects, scheduler, file system, and Graphics Processing Units (GPUs). Singularity also
focuses on container mobility and can be run in any workload with no modification to any
host. To provide a deeper understanding of the technology that implements this function,
the architecture of the VM, Docker container, and Singularity are compared in Figure 1
[17].

Figure 1. Architecture comparison of the Virtual Machine (a), Docker container (b), and Singularity (c).

2.1.3. Charliecloud
Charliecloud (developed at the Los Alamos National Laboratory) provides unprivi-

leged containers for user-defined software stacks in HPC [16]. The motivation for devel-
oping Charliecloud was to meet the increasing demand at supercomputing centers for
user-defined software stacks. These demands included complex dependencies or build
requirements, externally required configurations, portability, consistency, and security.
Charliecloud is designed as a lightweight, open source software stack based on the Linux
user namespace. It uses Docker to build images, uses a shell script for automating config-
urations, and runs user code with the C program [16]. It also uses a host network like
Singularity (described in the next section) to meet HPC performance standards.

Figure 1. Architecture comparison of the Virtual Machine (a), Docker container (b), and Singularity (c).

2.1.3. Charliecloud

Charliecloud (developed at the Los Alamos National Laboratory) provides unprivi-
leged containers for user-defined software stacks in HPC [16]. The motivation for devel-
oping Charliecloud was to meet the increasing demand at supercomputing centers for
user-defined software stacks. These demands included complex dependencies or build
requirements, externally required configurations, portability, consistency, and security.
Charliecloud is designed as a lightweight, open source software stack based on the Linux
user namespace. It uses Docker to build images, uses a shell script for automating con-
figurations, and runs user code with the C program [16]. It also uses a host network like
Singularity (described in the next section) to meet HPC performance standards.

www.manaraa.com

Appl. Sci. 2021, 11, 923 4 of 28

2.2. Container-Based HPC Cloud Solutions
2.2.1. Shifter

Shifter is a user-defined container image solution developed by the National Energy
Research Scientific Computer Center (NERSC) for HPC services. It has been implemented
as a prototype on the Cray supercomputers at NERSC. It allows an HPC system to permit
users to run a Docker image efficiently and safely. Shifter’s workflow [18] is shown in
Figure 2. It provides a user-defined image manager, workload management for resources,
and a user interface to distribute containers in an HPC environment and provides HPC
services to users. This solution covers various image types, as well as providing great detail
for a container-based image management workflow. However, because the batch scheduler
used in the traditional HPC field is used without integrating it with the container-based
scheduler, the amount of automation for the job workflow is still limited.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 4 of 27

2.2. Container-Based HPC Cloud Solutions
2.2.1. Shifter

Shifter is a user-defined container image solution developed by the National Energy
Research Scientific Computer Center (NERSC) for HPC services. It has been implemented
as a prototype on the Cray supercomputers at NERSC. It allows an HPC system to permit
users to run a Docker image efficiently and safely. Shifter’s workflow [18] is shown in
Figure 2. It provides a user-defined image manager, workload management for resources,
and a user interface to distribute containers in an HPC environment and provides HPC
services to users. This solution covers various image types, as well as providing great de-
tail for a container-based image management workflow. However, because the batch
scheduler used in the traditional HPC field is used without integrating it with the con-
tainer-based scheduler, the amount of automation for the job workflow is still limited.

Figure 2. NERSC Shifter workflow.

The Swiss National Supercomputing Center (CSCS) has developed a CSCS Shifter
[19] based on a NERSC Shifter to work with GPU resources at the Piz Daint supercom-
puter. A CSCS Shifter can be used by loading the module shifter-ng. To use Shifter com-
mands, users must include the GPU-enabled software stack by loading daint-gpu [19]. As
shown in Figure 3, the workload manager can distribute job requests from users, but this
can also be a connected runtime service. This architecture not only manages images but
also runs containers directly with these converted images. Although this solution imple-
ments automation of the job workflow by Shifter Runtime, it still has a dependency issue
in that it has to run in its own supercomputer environment and a network performance
issue between parallel processing running on multiple nodes.

Figure 3. CSCS Shifter workflow.

Figure 2. NERSC Shifter workflow.

The Swiss National Supercomputing Center (CSCS) has developed a CSCS Shifter [19]
based on a NERSC Shifter to work with GPU resources at the Piz Daint supercomputer.
A CSCS Shifter can be used by loading the module shifter-ng. To use Shifter commands,
users must include the GPU-enabled software stack by loading daint-gpu [19]. As shown
in Figure 3, the workload manager can distribute job requests from users, but this can
also be a connected runtime service. This architecture not only manages images but also
runs containers directly with these converted images. Although this solution implements
automation of the job workflow by Shifter Runtime, it still has a dependency issue in that
it has to run in its own supercomputer environment and a network performance issue
between parallel processing running on multiple nodes.

2.2.2. Sarus

Sarus is a software package designed to run Linux containers in HPC environments
and was developed by the CSCS in 2019. This software was developed specifically for the
requirements of HPC systems and was released as an open source application [10]. The
main reason for the development of Sarus is the increased demand for container-based
HPC platforms that solve the following issues [10]:

• Suitable for an HPC environment: It includes diskless compute nodes and workload
manager compatibility, is parallel file system friendly, and has no privilege escalation
(multitenant).

www.manaraa.com

Appl. Sci. 2021, 11, 923 5 of 28

• Vendor support: NVIDIA GPU, Cray MPI, and Remote Direct Memory Access (RDMA)
(it should meet the standard open container initiative (OCI) hooks)

• User experience: The Docker-like Command Line Interface (CLI), Docker Hub integra-
tion, and writable container file system should be satisfied.

• Admin experience: It includes easy installation (e.g., single binary) and container
customization (e.g., plugins).

• Maintenance effort: It can apply third-party technology and leverage community
efforts.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 4 of 27

2.2. Container-Based HPC Cloud Solutions
2.2.1. Shifter

Shifter is a user-defined container image solution developed by the National Energy
Research Scientific Computer Center (NERSC) for HPC services. It has been implemented
as a prototype on the Cray supercomputers at NERSC. It allows an HPC system to permit
users to run a Docker image efficiently and safely. Shifter’s workflow [18] is shown in
Figure 2. It provides a user-defined image manager, workload management for resources,
and a user interface to distribute containers in an HPC environment and provides HPC
services to users. This solution covers various image types, as well as providing great de-
tail for a container-based image management workflow. However, because the batch
scheduler used in the traditional HPC field is used without integrating it with the con-
tainer-based scheduler, the amount of automation for the job workflow is still limited.

Figure 2. NERSC Shifter workflow.

The Swiss National Supercomputing Center (CSCS) has developed a CSCS Shifter
[19] based on a NERSC Shifter to work with GPU resources at the Piz Daint supercom-
puter. A CSCS Shifter can be used by loading the module shifter-ng. To use Shifter com-
mands, users must include the GPU-enabled software stack by loading daint-gpu [19]. As
shown in Figure 3, the workload manager can distribute job requests from users, but this
can also be a connected runtime service. This architecture not only manages images but
also runs containers directly with these converted images. Although this solution imple-
ments automation of the job workflow by Shifter Runtime, it still has a dependency issue
in that it has to run in its own supercomputer environment and a network performance
issue between parallel processing running on multiple nodes.

Figure 3. CSCS Shifter workflow. Figure 3. CSCS Shifter workflow.

The architecture of Sarus solves all the above issues; the Sarus workflow is shown in
Figure 4. It includes an image manager and a container runtime manager. Users working
through the CLI can send container image requests from Docker Image Registry, and
a parallel file system can handle Docker image formats as well as TAR-compressed file
formats. Users operating through the JavaScript Object Notation (JSON) format can send
OCI bundle requests that can be handled with the root file system. It delivers requests
from users to the OCI runtime, such as runc to execute the container process, which creates
hooks such as the MPI job, NVIDIA GPU job, and other jobs. In this architecture, it is
impressive to use the concept of hooks that can support various HPC workloads for job
workflows. However, in the case of the Image Manager in Figure 3, it does not solve the
workload of the image management server when numerous users send their requests at
the same time. Furthermore, it is taxing for this Image Manager to download images from
Docker Image Registry or move images compressed with TAR with only one manager.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 5 of 27

2.2.2. Sarus
Sarus is a software package designed to run Linux containers in HPC environments

and was developed by the CSCS in 2019. This software was developed specifically for the
requirements of HPC systems and was released as an open source application [10]. The
main reason for the development of Sarus is the increased demand for container-based
HPC platforms that solve the following issues [10]:
• Suitable for an HPC environment: It includes diskless compute nodes and workload

manager compatibility, is parallel file system friendly, and has no privilege escalation
(multitenant).

• Vendor support: NVIDIA GPU, Cray MPI, and Remote Direct Memory Access
(RDMA) (it should meet the standard open container initiative (OCI) hooks)

• User experience: The Docker-like Command Line Interface (CLI), Docker Hub inte-
gration, and writable container file system should be satisfied.

• Admin experience: It includes easy installation (e.g., single binary) and container cus-
tomization (e.g., plugins).

• Maintenance effort: It can apply third-party technology and leverage community ef-
forts.
The architecture of Sarus solves all the above issues; the Sarus workflow is shown in Fig-

ure 4. It includes an image manager and a container runtime manager. Users working through
the CLI can send container image requests from Docker Image Registry, and a parallel file
system can handle Docker image formats as well as TAR-compressed file formats. Users op-
erating through the JavaScript Object Notation (JSON) format can send OCI bundle requests
that can be handled with the root file system. It delivers requests from users to the OCI
runtime, such as runc to execute the container process, which creates hooks such as the MPI
job, NVIDIA GPU job, and other jobs. In this architecture, it is impressive to use the concept
of hooks that can support various HPC workloads for job workflows. However, in the case of
the Image Manager in Figure 3, it does not solve the workload of the image management
server when numerous users send their requests at the same time. Furthermore, it is taxing for
this Image Manager to download images from Docker Image Registry or move images com-
pressed with TAR with only one manager.

Figure 4. CSCS Sarus workflow.

2.2.3. EASEY
One application of Charliecloud is in developing a software program called EASEY,

which is a containerized application for HPC systems [11]. As shown in Figure 5, the EA-
SEY workflow for job submissions on HPC systems uses Charliecloud to connect user

Figure 4. CSCS Sarus workflow.

www.manaraa.com

Appl. Sci. 2021, 11, 923 6 of 28

2.2.3. EASEY

One application of Charliecloud is in developing a software program called EASEY,
which is a containerized application for HPC systems [11]. As shown in Figure 5, the EASEY
workflow for job submissions on HPC systems uses Charliecloud to connect user systems
with HPC software stacks, such as batch schedulers and storage servers (file system), using
EASEY middleware. We selected this study case because it is a good example of developing
a user-defined software stack for the HPC environment, even though no automation is
implemented for the job workflow.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 6 of 27

systems with HPC software stacks, such as batch schedulers and storage servers (file sys-
tem), using EASEY middleware. We selected this study case because it is a good example
of developing a user-defined software stack for the HPC environment, even though no
automation is implemented for the job workflow.

Figure 5. EASEY Charliecloud workflow.

2.2.4. JEDI
An example of using Singularity (also Charliecloud) is provided by jedi-stack, devel-

oped by the JEDI team in the Joint Center for Satellite Data Assimilation (JCSDA) [12]. As
shown in Figure 6, with jedi-stack, jedi users can use Docker, Charliecloud, and Singular-
ity to use cloud resources or HPC resources. This provides instant images for cloud com-
puting and environment modules with selected HPC systems. For continuous integration
testing, Travis-CI is used for leveraging Docker containers. This team uses packaged user
environment concepts for defining the software container. The advantage of this architec-
ture is that resource pools are divided into cloud and HPC environments, and each pool
is provided by the different solutions Charliecloud (Docker based) and Singularity. As
shown in this architecture, job workflow management is not mentioned or implemented.

Figure 6. Jedi-stack workflow.

2.3. Requirements of the HPC Workflow in a Containerized Environment
From our review of related projects, we listed 10 requirements and compared them

with those of our proposed platform in Table 1. These requirements were derived from
our experiences of HPC users and system administrators. We define an HPC workflow as

Figure 5. EASEY Charliecloud workflow.

2.2.4. JEDI

An example of using Singularity (also Charliecloud) is provided by jedi-stack, devel-
oped by the JEDI team in the Joint Center for Satellite Data Assimilation (JCSDA) [12]. As
shown in Figure 6, with jedi-stack, jedi users can use Docker, Charliecloud, and Singularity
to use cloud resources or HPC resources. This provides instant images for cloud computing
and environment modules with selected HPC systems. For continuous integration testing,
Travis-CI is used for leveraging Docker containers. This team uses packaged user environ-
ment concepts for defining the software container. The advantage of this architecture is that
resource pools are divided into cloud and HPC environments, and each pool is provided
by the different solutions Charliecloud (Docker based) and Singularity. As shown in this
architecture, job workflow management is not mentioned or implemented.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 6 of 27

systems with HPC software stacks, such as batch schedulers and storage servers (file sys-
tem), using EASEY middleware. We selected this study case because it is a good example
of developing a user-defined software stack for the HPC environment, even though no
automation is implemented for the job workflow.

Figure 5. EASEY Charliecloud workflow.

2.2.4. JEDI
An example of using Singularity (also Charliecloud) is provided by jedi-stack, devel-

oped by the JEDI team in the Joint Center for Satellite Data Assimilation (JCSDA) [12]. As
shown in Figure 6, with jedi-stack, jedi users can use Docker, Charliecloud, and Singular-
ity to use cloud resources or HPC resources. This provides instant images for cloud com-
puting and environment modules with selected HPC systems. For continuous integration
testing, Travis-CI is used for leveraging Docker containers. This team uses packaged user
environment concepts for defining the software container. The advantage of this architec-
ture is that resource pools are divided into cloud and HPC environments, and each pool
is provided by the different solutions Charliecloud (Docker based) and Singularity. As
shown in this architecture, job workflow management is not mentioned or implemented.

Figure 6. Jedi-stack workflow.

2.3. Requirements of the HPC Workflow in a Containerized Environment
From our review of related projects, we listed 10 requirements and compared them

with those of our proposed platform in Table 1. These requirements were derived from
our experiences of HPC users and system administrators. We define an HPC workflow as

Figure 6. Jedi-stack workflow.

www.manaraa.com

Appl. Sci. 2021, 11, 923 7 of 28

2.3. Requirements of the HPC Workflow in a Containerized Environment

From our review of related projects, we listed 10 requirements and compared them
with those of our proposed platform in Table 1. These requirements were derived from
our experiences of HPC users and system administrators. We define an HPC workflow
as the flow of tasks that need to be executed to compute on HPC resources. Tasks in a
containerized environment can be divided into image, template, and job (container and
application) management.

Table 1. Comparison of requirement of projects vs. the proposed platform.

Requirements Shifter Sarus EASEY JEDI Proposed Platform

A self-service interface Image Image, template,
job Image, template Image Image, template, job

Container solutions Docker Docker Charliecloud
Docker,

Charliecloud,
Singularity

Docker, Singularity

A rapid expansion of
new configuration
environments:

(1) Template-based
image
management

(2) Image-based job
management

(3) Image format
conversion

(1), (3) (1), (2), (3) (1) None (1), (2)

A pay-as-used model
(on-demand billing) None None None None Yes
Performance similar to
that of bare-metal
servers

None Yes Yes None Yes

Auto-provisioning
that includes virtual
instances and
applications

Yes Yes None None Yes

Workload
management Image Image, job (batch

scheduler) None None Image, job (batch
scheduler)

Resource auto-scaling None None None None Yes (image
management)

Multitenancy
capability Yes Yes None None Yes

Portability of
application Yes Yes Yes None Yes

In Table 1, for a self-service interface requirement, the Sarus project designed image,
template, and job management, which was implemented as command line interfaces. Our
proposed platform was also designed to support image, template, and job management
with integrated command line interfaces. Shifter and Sarus use Docker as their basic
container solution. The EASEY project was designed based on a Charliecloud solution,
which can be used in an HPC environment. The JEDI project supports various container
solutions such as Docker, Charliecloud, and Singularity. We selected only Docker and
Singularity for our base container solutions because we considered architectural ways
to provide unprivileged containers with Docker instead of Charliecloud. For a rapid
expansion of new configuration environments, we listed three functionalities: template-
based image management, image-based job management, and image format conversion.
Sarus supports all three features. We first attempted to implement two main features and
included image format conversion between Docker and Singularity as our future work.

www.manaraa.com

Appl. Sci. 2021, 11, 923 8 of 28

For a pay-as-used model, we implemented an on-demand billing system by collecting
metering data with an existing authentication and authorization policy not supported in
other projects. Sarus and EASEY use the host network with containers through multinode
computing. We also evaluated container networking performance with tuning in our
previous research. Shifter and Sarus support auto-provisioning that includes containers
and inside running applications. For workload management, Sarus supports both image
and job management. We referred to the architecture of this project. For resource auto-
scaling, no projects support it. We implemented it for image management to distribute
a request load. For multitenancy capability, Shifter and Sarus were designed to use a
shared resource pool but provide various separated services to users. All projects support
portability of application with container solutions.

3. Platform Design

To meet the requirements that were mentioned in the previous section, we designed a
container-based HPC cloud platform based on system analysis. The system architecture and
workflow designs were proposed with a consideration of the requirements of current users
and administrators. The workflow of the image management system, job management
system, and metering data management were explained in detail.

3.1. Architecture

This platform was designed in accordance with the three service roles of the cloud
architecture (Figure 7); these are service creator, service provider, and service consumer
roles that must be distinguished to enable self-service. In this figure, items in blue boxes
were implemented by exiting from the open source software, those in green boxes were
developed by integrating the necessary parts, and those in yellow boxes were newly
developed. The service creator can manage a template consisting of Template Create
and Template Evaluate processes. The previously verified templates can be searched
using Template List and Template Search and can also be deleted using Template Delete.
Template List, Template Search, and Template Delete were developed as CLI tools and
provided as a service. All verified templates are automatic installation and configuration
scripts for versions such as Operating System (OS), library, compiler, and application. All
container images can be built based on verified templates. All jobs (including container
and application) can be executed based on these built images.

HPCaaS is provided by our container-based HPC cloud service provider to service
consumers through the container-based HPC cloud management platform, which consists
primarily of job integration management and image management processes. Our platform
provides services based on two container platforms, the hardware-based management of
which is accomplished with Container Platform Management. Image management is based
on a distributed system and is a base for the implementation of workload-distributing,
task-parallelizing, auto-scaling, and image-provisioning functions of Image Manager in
detail. We designed container and application provisioning by developing integration
packages according to the different types of jobs because different container solutions need
different container workload managers. The on-demand billing function was implemented
using measured metering data. We designed real-time resource monitoring for CPU use
and memory usage, and a function for providing various types of Job History Data records
based on collected metering data. In addition, interfaces for connecting with other service
roles were also implemented. Service Development Interface sends the template created by
the service creator to the service provider. The image service and job service created on
this template are delivered in the form of HPC Image Service and HPC Job Service through
Service Delivery Interface.

www.manaraa.com

Appl. Sci. 2021, 11, 923 9 of 28

Appl. Sci. 2021, 11, x FOR PEER REVIEW 8 of 27

3.1. Architecture
This platform was designed in accordance with the three service roles of the cloud archi-

tecture (Figure 7); these are service creator, service provider, and service consumer roles that
must be distinguished to enable self-service. In this figure, items in blue boxes were imple-
mented by exiting from the open source software, those in green boxes were developed by
integrating the necessary parts, and those in yellow boxes were newly developed. The service
creator can manage a template consisting of Template Create and Template Evaluate pro-
cesses. The previously verified templates can be searched using Template List and Template
Search and can also be deleted using Template Delete. Template List, Template Search, and
Template Delete were developed as CLI tools and provided as a service. All verified templates
are automatic installation and configuration scripts for versions such as Operating System
(OS), library, compiler, and application. All container images can be built based on verified
templates. All jobs (including container and application) can be executed based on these built
images.

Figure 7. System architecture.

HPCaaS is provided by our container-based HPC cloud service provider to service
consumers through the container-based HPC cloud management platform, which consists
primarily of job integration management and image management processes. Our platform
provides services based on two container platforms, the hardware-based management of
which is accomplished with Container Platform Management. Image management is
based on a distributed system and is a base for the implementation of workload-distrib-
uting, task-parallelizing, auto-scaling, and image-provisioning functions of Image Man-
ager in detail. We designed container and application provisioning by developing inte-
gration packages according to the different types of jobs because different container solu-
tions need different container workload managers. The on-demand billing function was
implemented using measured metering data. We designed real-time resource monitoring
for CPU use and memory usage, and a function for providing various types of Job History
Data records based on collected metering data. In addition, interfaces for connecting with
other service roles were also implemented. Service Development Interface sends the tem-
plate created by the service creator to the service provider. The image service and job ser-
vice created on this template are delivered in the form of HPC Image Service and HPC Job
Service through Service Delivery Interface.

Figure 7. System architecture.

The workflow diagram presents a detailed design of the container-based HPC cloud
platform, which includes image management (yellow boxes) and job integration manage-
ment (blue boxes), as demonstrated in Figure 8. We proposed a distributed system for
image management to reduce the workload resulting from requests. When HPC users
request the desired container image, Image Manager automatically generates and provides
the image based on the existing templates created by administrators. For example, when a
user tries to execute an MPI job, a container image including MPI should be checked first. If
the requested image exists, submit the MPI job with this image. If not, the user can request
an image build with an existing template. If there is no template, the user can request a
template from the administrator. Each user can request the image but can also share it
with other users. In addition, we designed an auto-scaling scheduler for Image Manager
nodes regarded as workers. To ensure job integration management, we integrated a batch
scheduler and container orchestration mechanism to deploy the container and application
simultaneously. After creating a container and executing applications, all processes and
containers were automatically deleted to release the resource allocation. Additionally, a
data collector for data metering was designed. Finally, we described My Resource View,
which was designed to show the resource generated by each user and is used for imple-
menting multitenancy. To share the resource pool with different or isolated services by
each user, we designed My Resource View to check through usage statistics for each user’s
resources.

3.2. Image Management

The workflow of image management is shown in Figure 9. The user can submit image
requests on the login node; when user requests are received, Image Manager delivers
them to Docker Daemon or Singularity Daemon to deploy the images and then reports
the history to Image Metadata Storage on the image manager node. Docker Daemon
uses templates written in Docker file format to create Docker images automatically and in
accordance with the user’s request. All the created Docker images are stored in Docker
Image Temporary Storage for the steps that follow. Singularity Daemon also uses templates
written in definition file format to create Singularity images automatically, based on the
request. Similarly, all created Singularity images are stored in Singularity Image Temporary
Storage for upcoming steps. When the user requests Docker Image Share, Image Manager
uploads the requested image to the Private Docker Registry that has already been built

www.manaraa.com

Appl. Sci. 2021, 11, 923 10 of 28

as a local hub. This local hub is used as Docker Image Storage to ensure high-speed
transmission and security. When a user requests Singularity Image Share, Image Manager
uploads the requested image to the parallel file system that has been mounted on all nodes.
Once the image is uploaded, a job request can be submitted using this image.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 9 of 27

The workflow diagram presents a detailed design of the container-based HPC cloud
platform, which includes image management (yellow boxes) and job integration manage-
ment (blue boxes), as demonstrated in Figure 8. We proposed a distributed system for image
management to reduce the workload resulting from requests. When HPC users request the
desired container image, Image Manager automatically generates and provides the image
based on the existing templates created by administrators. For example, when a user tries
to execute an MPI job, a container image including MPI should be checked first. If the re-
quested image exists, submit the MPI job with this image. If not, the user can request an
image build with an existing template. If there is no template, the user can request a template
from the administrator. Each user can request the image but can also share it with other
users. In addition, we designed an auto-scaling scheduler for Image Manager nodes re-
garded as workers. To ensure job integration management, we integrated a batch scheduler
and container orchestration mechanism to deploy the container and application simultane-
ously. After creating a container and executing applications, all processes and containers
were automatically deleted to release the resource allocation. Additionally, a data collector
for data metering was designed. Finally, we described My Resource View, which was de-
signed to show the resource generated by each user and is used for implementing mul-
titenancy. To share the resource pool with different or isolated services by each user, we
designed My Resource View to check through usage statistics for each user’s resources.

Figure 8. System workflow.

3.2. Image Management
The workflow of image management is shown in Figure 9. The user can submit image

requests on the login node; when user requests are received, Image Manager delivers them
to Docker Daemon or Singularity Daemon to deploy the images and then reports the history
to Image Metadata Storage on the image manager node. Docker Daemon uses templates
written in Docker file format to create Docker images automatically and in accordance with
the user’s request. All the created Docker images are stored in Docker Image Temporary
Storage for the steps that follow. Singularity Daemon also uses templates written in defini-
tion file format to create Singularity images automatically, based on the request. Similarly,
all created Singularity images are stored in Singularity Image Temporary Storage for up-
coming steps. When the user requests Docker Image Share, Image Manager uploads the
requested image to the Private Docker Registry that has already been built as a local hub.
This local hub is used as Docker Image Storage to ensure high-speed transmission and se-

Figure 8. System workflow.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 10 of 27

curity. When a user requests Singularity Image Share, Image Manager uploads the re-
quested image to the parallel file system that has been mounted on all nodes. Once the image
is uploaded, a job request can be submitted using this image.

Figure 9. Image management workflow.

Image Manager constitutes the key point of our platform. We presented a distributed
and parallel architecture for our platform to reduce the workload of Image Manager re-
sulting from multiple users with access to Image Manager Server. As depicted in Figure
10, six features were designed as parallel workloads, thereby allowing users to send user
requests simultaneously. On the login node, we deployed client parts from Client A to
Client F; every client has its matching worker port designated Worker A to Worker F. We
designed Docker Image Create, Docker Image Share, and Docker Image Delete Features
for Docker workers; for Singularity workers, Singularity Image Create, Singularity Image
Share, and Singularity Image Delete Features were designed. Between client and worker,
we presented Task Queue for listing user requests by task unit. When User A creates task ① and User B creates task ②, according to the queue order, the Image Manager first
receives task ① and then receives task ②. Likewise, tasks ③ and ④ requested by incom-
ing users are queued in that order and are executed immediately after the preceding tasks
are completed. Unlike other workload distributions for Image List and Image Search Fea-
tures, these are designed separately to connect only to Image Metadata Storage.

Figure 9. Image management workflow.

Image Manager constitutes the key point of our platform. We presented a distributed
and parallel architecture for our platform to reduce the workload of Image Manager result-
ing from multiple users with access to Image Manager Server. As depicted in Figure 10, six
features were designed as parallel workloads, thereby allowing users to send user requests
simultaneously. On the login node, we deployed client parts from Client A to Client F;
every client has its matching worker port designated Worker A to Worker F. We designed
Docker Image Create, Docker Image Share, and Docker Image Delete Features for Docker

www.manaraa.com

Appl. Sci. 2021, 11, 923 11 of 28

workers; for Singularity workers, Singularity Image Create, Singularity Image Share, and
Singularity Image Delete Features were designed. Between client and worker, we presented
Task Queue for listing user requests by task unit. When User A creates task 1© and User B
creates task 2©, according to the queue order, the Image Manager first receives task 1© and
then receives task 2©. Likewise, tasks 3© and 4© requested by incoming users are queued in
that order and are executed immediately after the preceding tasks are completed. Unlike
other workload distributions for Image List and Image Search Features, these are designed
separately to connect only to Image Metadata Storage.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 11 of 27

Figure 10. Image Manager workflow.

We designed an auto-scaling scheduler composed of scale-up and scale-down rules
for the scheduler. As shown in Figure 11, users can submit image requests to Auto-scaling
Group using Login Node, which consists of a master worker node and several slave
worker nodes. Redis-server runs on the Master Worker node and synchronizes the slave
workers. Each worker will send the created image automatically to the public mounted
file system or Docker Private Registry, depending on the type of platform.

Figure 11. Auto-scaling scheduler workflow.

To calculate the waiting time of the latency, the execution time of the image was
added. After comparison of the execution time and the waiting time, it is determined
whether to scale up or scale down the slave workers. Figure 12 presents the flowchart of
the auto-scaling scheduler. We designed auto-scaling algorithms for each defined task
queue that cannot be executed in parallel. When a user requests a task queue, our system
performs the following determination steps starting with Create Image Start. Next, the
system checks whether there are current active tasks in the auto-scaling worker group

Figure 10. Image Manager workflow.

We designed an auto-scaling scheduler composed of scale-up and scale-down rules
for the scheduler. As shown in Figure 11, users can submit image requests to Auto-scaling
Group using Login Node, which consists of a master worker node and several slave worker
nodes. Redis-server runs on the Master Worker node and synchronizes the slave workers.
Each worker will send the created image automatically to the public mounted file system
or Docker Private Registry, depending on the type of platform.

To calculate the waiting time of the latency, the execution time of the image was
added. After comparison of the execution time and the waiting time, it is determined
whether to scale up or scale down the slave workers. Figure 12 presents the flowchart
of the auto-scaling scheduler. We designed auto-scaling algorithms for each defined task
queue that cannot be executed in parallel. When a user requests a task queue, our system
performs the following determination steps starting with Create Image Start. Next, the
system checks whether there are current active tasks in the auto-scaling worker group
using Check Task Active. If tasks in the worker group are not currently active, any worker
is selected to activate the task using Add Consumer, and the task is sent using Send Task
to the selected worker using the routing key. When the task sent from the worker node is
finished, Cancel Consumer is used to deactivate the task, and if it is not the master worker
node, the worker node registered using Remove Worker is released. The task queue process
for image generation is a scale-down and waits for the next user’s request.

www.manaraa.com

Appl. Sci. 2021, 11, 923 12 of 28

Appl. Sci. 2021, 11, x FOR PEER REVIEW 11 of 27

Figure 10. Image Manager workflow.

We designed an auto-scaling scheduler composed of scale-up and scale-down rules
for the scheduler. As shown in Figure 11, users can submit image requests to Auto-scaling
Group using Login Node, which consists of a master worker node and several slave
worker nodes. Redis-server runs on the Master Worker node and synchronizes the slave
workers. Each worker will send the created image automatically to the public mounted
file system or Docker Private Registry, depending on the type of platform.

Figure 11. Auto-scaling scheduler workflow.

To calculate the waiting time of the latency, the execution time of the image was
added. After comparison of the execution time and the waiting time, it is determined
whether to scale up or scale down the slave workers. Figure 12 presents the flowchart of
the auto-scaling scheduler. We designed auto-scaling algorithms for each defined task
queue that cannot be executed in parallel. When a user requests a task queue, our system
performs the following determination steps starting with Create Image Start. Next, the
system checks whether there are current active tasks in the auto-scaling worker group

Figure 11. Auto-scaling scheduler workflow.
Appl. Sci. 2021, 11, x FOR PEER REVIEW 13 of 27

Figure 12. Flowchart of the auto-scaling scheduler.

Table 2. Variables and descriptions of equations.

Variables Description
N The number of current workers with active tasks
n The number of current active tasks

Φ CT Current time
Φ ST Start time of the current active task
Φ ET Execution time for the image to run
Φ WT Total waiting time for the active tasks

Φ W Worker that has the minimum value of the total waiting
time

3.3. Job Management
We presented a design of the job integration management system. After creating and

uploading the image, the user can use Submit Job Request to schedule jobs, allocate com-
puter resources, create containers, and execute HPC applications. The platform then auto-
matically deletes containers to release allocated resources. Depending on container platform
types, such as Docker and Singularity, our system designs different processes for submitting
jobs. The key aspect of job integration management is the integration work done with a tra-
ditional batch scheduler so that traditional HPC users also can use our system. In addition,
our system is designed to automate container, application, and resource releases through
Submit Job Request. Our system consists of three main features, i.e., Job Submit, Job List,
and Job Delete, for which respective flowcharts are presented in the following sections.

Different containers require different schedulers; the Singularity platform can di-
rectly use traditional HPC batch schedulers for submitting jobs, while the Docker platform
requires integration with the default container scheduler. Job integration management in
our system was designed to support both platforms. As shown in Figure 13, the user can
submit jobs through Job Submit, but since the job submission process varies based on the
platform, we designed it as both Docker Job Summit and Singularity Job Submit. Job List,
Job Delete, and History Delete were also designed.

Figure 12. Flowchart of the auto-scaling scheduler.

However, if there are currently active tasks in the auto-scaling worker group, an
arbitrary worker among the active workers is first selected using the following steps: add a
worker node, activate the task queue using Add Consumer, and send the task by specifying
the routing key. When the work is finished, and the worker node is released, it returns to
the scale-down state and waits for another request. If there are currently running tasks in
all workers, the worker node with the smallest sum of the waiting time is selected and sent.
The variables and descriptions to get Equations (1) and (2) for the Get Min (total waiting
time) worker are summarized in Table 2 below.

www.manaraa.com

Appl. Sci. 2021, 11, 923 13 of 28

Table 2. Variables and descriptions of equations.

Variables Description

N The number of current workers with active tasks
n The number of current active tasks

Φ CT Current time
Φ ST Start time of the current active task
Φ ET Execution time for the image to run
Φ WT Total waiting time for the active tasks
Φ W Worker that has the minimum value of the total waiting time

Equation (1) explains Φ WT that calculates the total waiting time for active tasks.
After getting a list of currently running tasks, how long each task has been executed up
until the present time is calculated using the formula Φ CT−Φ ST. Here, Φ ST represents
the start time of the current active task, Φ CT the current time of the system, and n the
number of current active tasks. Φ WT denotes the sum of latencies of active tasks for each
worker node that has active tasks. Finally, we can get the worker Φ W that has a minimum
value of the total waiting time of the workers using Equation (2).

Φ WT =
∞

∑
n=1

(Φ ETn − (Φ CT − STn)) (1)

ΦW = min(
∞

∑
N=1

(Φ WTN)) (2)

However, when these equations are applied to an actual cluster environment, the
following limitations exist. We implemented one worker per node; therefore N also
stands for the number of nodes of Image Manager. The higher the value of N, the better,
but it is limited by the number of network switch ports connecting nodes in a cluster
configuration. Considering the availability of our HPC resources, we tested N up to 3. We
also implemented one task per process; therefore, n also stands for the number of processes
of the host. The maximum value of n is the number of cores per one node. However,
considering each task is not executed completely independently but shares the resource of
the host, we actually created 4 tasks and tested them. The optimization of the resource use
about n is one more area of further research.

3.3. Job Management

We presented a design of the job integration management system. After creating
and uploading the image, the user can use Submit Job Request to schedule jobs, allocate
computer resources, create containers, and execute HPC applications. The platform then
automatically deletes containers to release allocated resources. Depending on container
platform types, such as Docker and Singularity, our system designs different processes for
submitting jobs. The key aspect of job integration management is the integration work done
with a traditional batch scheduler so that traditional HPC users also can use our system. In
addition, our system is designed to automate container, application, and resource releases
through Submit Job Request. Our system consists of three main features, i.e., Job Submit,
Job List, and Job Delete, for which respective flowcharts are presented in the following
sections.

Different containers require different schedulers; the Singularity platform can directly
use traditional HPC batch schedulers for submitting jobs, while the Docker platform
requires integration with the default container scheduler. Job integration management in
our system was designed to support both platforms. As shown in Figure 13, the user can
submit jobs through Job Submit, but since the job submission process varies based on the
platform, we designed it as both Docker Job Summit and Singularity Job Submit. Job List,
Job Delete, and History Delete were also designed.

www.manaraa.com

Appl. Sci. 2021, 11, 923 14 of 28
Appl. Sci. 2021, 11, x FOR PEER REVIEW 14 of 27

Figure 13. Job management workflow.

Metering data management was implemented by Data Collector, which consists of
Resource Measured Data Collector, Real-time Data Collector, and Job History Data Col-
lector, as specified in Figure 14. Resource Measured Data Collector collects resource meas-
ured data provided by the batch scheduler. Real-time Data Collector collects current CPU
use and memory use for containers running in the container platform group by sending
requests using the sshpass command every 10 s while the container is running. Job History
Data Collector organizes measured data and real-time data designated by JobID as a his-
tory dataset that can be reconstructed into history data for a certain period. The sshpass
command for sending requests every 10 s will create an overhead on both the metering
node and the compute nodes. As a way to improve performance, there is a solution of
collecting logs using another communication protocol or installing a log collection agent
on the compute node side that can transmit to the metering node. It has not yet been ap-
plied as a future plan.

Figure 14. Metering management workflow.

Figure 13. Job management workflow.

Metering data management was implemented by Data Collector, which consists
of Resource Measured Data Collector, Real-time Data Collector, and Job History Data
Collector, as specified in Figure 14. Resource Measured Data Collector collects resource
measured data provided by the batch scheduler. Real-time Data Collector collects current
CPU use and memory use for containers running in the container platform group by
sending requests using the sshpass command every 10 s while the container is running.
Job History Data Collector organizes measured data and real-time data designated by
JobID as a history dataset that can be reconstructed into history data for a certain period.
The sshpass command for sending requests every 10 s will create an overhead on both
the metering node and the compute nodes. As a way to improve performance, there is
a solution of collecting logs using another communication protocol or installing a log
collection agent on the compute node side that can transmit to the metering node. It has
not yet been applied as a future plan.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 14 of 27

Figure 13. Job management workflow.

Metering data management was implemented by Data Collector, which consists of
Resource Measured Data Collector, Real-time Data Collector, and Job History Data Col-
lector, as specified in Figure 14. Resource Measured Data Collector collects resource meas-
ured data provided by the batch scheduler. Real-time Data Collector collects current CPU
use and memory use for containers running in the container platform group by sending
requests using the sshpass command every 10 s while the container is running. Job History
Data Collector organizes measured data and real-time data designated by JobID as a his-
tory dataset that can be reconstructed into history data for a certain period. The sshpass
command for sending requests every 10 s will create an overhead on both the metering
node and the compute nodes. As a way to improve performance, there is a solution of
collecting logs using another communication protocol or installing a log collection agent
on the compute node side that can transmit to the metering node. It has not yet been ap-
plied as a future plan.

Figure 14. Metering management workflow. Figure 14. Metering management workflow.

www.manaraa.com

Appl. Sci. 2021, 11, 923 15 of 28

4. Platform Implementation

Our research goal was to develop a system that provides container-based HPCaaS
in the cloud. To evaluate our system, we created a cluster environment and verified the
serviceability of our container-based HPC cloud platform using supercomputing resources.
We configured the cluster to check the availability of our platform. As depicted in Figure 15,
our container-based HPC cloud platform was constructed based on the network configura-
tion of the KISTI cluster. There are three types of network configurations: a public network
connected by a 1G Ethernet switch (black line), a management network connected by a 10G
Ethernet switch (black line), and a data network connected by an InfiniBand switch (red
line). We constructed three Image Manager Server nodes as an auto-scaling group, and
these are connected to Docker Private Registry and the parallel file system GPFS storage
with the management network. As the figure shows, we configured two container types,
Docker Container Platform (green), which is configured with the Calico overlay network
for container network communication, and Singularity Container Platform (blue), which
is configured with the host network for container network communication. Both data
networks for container communication are connected to InfiniBand Switch, and the Job
Submit Server is deployed with PBSPro and Kubernetes. For Docker Container Platform,
the integration scheduler of PBSPro and Kubernetes will work to create jobs. In contrast,
for Singularity Container Platform, only PBSPro will work to create jobs. We also built
Image Metadata Server and Job Metadata Server for storing and managing image metadata
and job metadata, respectively.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 16 of 27

Figure 15. Cluster environment.

Table 3. Installed software information.

 Software Version Installed Node (in Figure 14)
Image Metadata Storage MariaDB 5.5.52 Image Metadata Server
Job Metadata Storage MongoDB 2.6.12 Job Metadata Server

Container Platform Docker 17.06-ce
Docker Container Platform, Docker Private Registry, Image Manager
Server

 Singularity 2.2 Singularity Container Platform, Image Manager Server

Batch Scheduler PBSPro 14.1.0
Job Submit Server, Docker Container Platform, Singularity Container
Platform

Docker Container Scheduler Kubernetes 1.7.4 Job Submit Server, Docker Container Platform
Overlay Network Solution Calico 2.3 Job Submit Server, Docker Container Platform
Distributed Task Queue Celery 4.1 Image Submit Server, Image Manager Server, Job Submit Server
Programming Language Python 2.7.5 Image Submit Server, Image Manager Server, Job Submit Server
Message Broker Redis-server 3.2.3 Image Manger Server
User Command Line Tool (developed in Python) PLSICLOUD 1.0 Image Submit Server, Job Submit Server

5. Evaluation
In this study, we evaluated a platform with essential attributes such as on-demand

self-service, rapid elasticity and scalability, auto-provisioning, workload management,
multitenancy, portability of applications, and performance, which can meet the listed re-
quirements experienced by HPC users and administrators in Table 1.

5.1. On-Demand Self-Service
On-demand self-service means that a consumer can unilaterally provision computing

capabilities, such as computing time and storage, as needed automatically without requiring
human interaction with each service provider [20]. HPC users can self-service on both cur-
rent image resources and computational resources, which was automatically provided by
the service provider, as shown in Figure 7. Users can also request their own images and
submit jobs by allocating computational resources through the plsicloud_create_image and
plsicloud_submit_job commands. We also presented on-demand billing management of
this platform, which enables a pay-as-used model. By integrating the tracejob command of
PBSPro, we implemented a resource usage calculation result for each user in Figure 16. As
the figure shows, we provided average CPU use, total number of used processes, total used
wall-time, CPU time, memory size, and virtual memory size for on-demand billing man-
agement evaluation. Based on this used resource information, our supercomputing center
can apply a pricing policy for the pay-as-used model.

Figure 15. Cluster environment.

Table 3 shows the installed software information. We have software licenses for
PBSPro and GPFS. Therefore, we used other open source software compatible with the
software. The choice of open source software was based on easy and common use. We
installed MariaDB v5.5.52 for Image Metadata Server as the relational database MySQL
and MongoDB v2.6.12 for Job Metadata Server as the Not Only SQL (NoSQL) database.
Job Metadata Server is more suitable for building NoSQL databases rather than relational
databases for storing metering data on resource use. NoSQL is designed to improve
latency and throughput performance by providing highly optimized key value storage
for simple retrieval and additional operations. We selected MongoDB to implement the
NoSQL database because it is designed based on the document data model and provides a
manual for various programming languages, as well as a simple query syntax in Python.
Job Submit Server and Image Submit Server that implemented the distributed system

www.manaraa.com

Appl. Sci. 2021, 11, 923 16 of 28

were installed using a combination of Python v2.7.5, Celery v4.1, and Redis-server v3.2.3.
PBSPro v14.1.0 was installed as a batch scheduler, and Kubernetes v1.7.4 was installed as a
container scheduler. The latest Docker v17.05-ce was installed with Calico v2.3 to configure
the overlay network with Kubernetes for Docker containers. For Singularity Container
Platform, we installed Singularity 2.2, which is the most stable version. PLSICLOUD is
a user command line tool with which users submit image and job requests, and it was
installed in Image Submit Server and Job Submit Server.

Table 3. Installed software information.

Software Version Installed Node (in Figure 14)

Image Metadata Storage MariaDB 5.5.52 Image Metadata Server
Job Metadata Storage MongoDB 2.6.12 Job Metadata Server

Container Platform Docker 17.06-ce Docker Container Platform, Docker Private Registry,
Image Manager Server

Singularity 2.2 Singularity Container Platform, Image Manager
Server

Batch Scheduler PBSPro 14.1.0 Job Submit Server, Docker Container Platform,
Singularity Container Platform

Docker Container Scheduler Kubernetes 1.7.4 Job Submit Server, Docker Container Platform
Overlay Network Solution Calico 2.3 Job Submit Server, Docker Container Platform

Distributed Task Queue Celery 4.1 Image Submit Server, Image Manager Server, Job
Submit Server

Programming Language Python 2.7.5 Image Submit Server, Image Manager Server, Job
Submit Server

Message Broker Redis-
server 3.2.3 Image Manger Server

User Command Line Tool (developed in Python) PLSICLOUD 1.0 Image Submit Server, Job Submit Server

5. Evaluation

In this study, we evaluated a platform with essential attributes such as on-demand
self-service, rapid elasticity and scalability, auto-provisioning, workload management,
multitenancy, portability of applications, and performance, which can meet the listed
requirements experienced by HPC users and administrators in Table 1.

5.1. On-Demand Self-Service

On-demand self-service means that a consumer can unilaterally provision computing
capabilities, such as computing time and storage, as needed automatically without requir-
ing human interaction with each service provider [20]. HPC users can self-service on both
current image resources and computational resources, which was automatically provided
by the service provider, as shown in Figure 7. Users can also request their own images and
submit jobs by allocating computational resources through the plsicloud_create_image and
plsicloud_submit_job commands. We also presented on-demand billing management of
this platform, which enables a pay-as-used model. By integrating the tracejob command
of PBSPro, we implemented a resource usage calculation result for each user in Figure 16.
As the figure shows, we provided average CPU use, total number of used processes, total
used wall-time, CPU time, memory size, and virtual memory size for on-demand billing
management evaluation. Based on this used resource information, our supercomputing
center can apply a pricing policy for the pay-as-used model.

5.2. Rapid Elasticity and Scalability

Rapid elasticity and scalability mean that capabilities can be elastically provisioned
and released, in some cases automatically, to scale rapidly up and inward commensurate
with demand [20]. One important factor affecting rapid elasticity on our platform is
the rapid movement of image files. When a user makes a job request for a resource
with the required image, the system must quickly move the image created in Image

www.manaraa.com

Appl. Sci. 2021, 11, 923 17 of 28

Temporary Storage to the compute nodes. For Singularity, there are no considerations
when transferring an image, which can be also run as a container. The problem is to
deploy the Docker image. Since Docker has a layered image structure and is managed
by the Docker engine, it must be compressed into a file to move to the compute nodes.
Considering the file compression time, file transfer time, and file decompression time,
this is very inefficient. To solve this problem, we built Docker Private Registry that can
store images connected with the management network. We calculated the degree of time
deduction with and without Docker Private Registry for handling a 1.39 GB image. With
Docker Private Registry, it took 122 s, 20 s faster than without Docker Private Registry.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 17 of 27

Figure 16. Resource usage.

5.2. Rapid Elasticity and Scalability
Rapid elasticity and scalability mean that capabilities can be elastically provisioned

and released, in some cases automatically, to scale rapidly up and inward commensurate
with demand [20]. One important factor affecting rapid elasticity on our platform is the
rapid movement of image files. When a user makes a job request for a resource with the
required image, the system must quickly move the image created in Image Temporary
Storage to the compute nodes. For Singularity, there are no considerations when transfer-
ring an image, which can be also run as a container. The problem is to deploy the Docker
image. Since Docker has a layered image structure and is managed by the Docker engine,
it must be compressed into a file to move to the compute nodes. Considering the file com-
pression time, file transfer time, and file decompression time, this is very inefficient. To
solve this problem, we built Docker Private Registry that can store images connected with
the management network. We calculated the degree of time deduction with and without
Docker Private Registry for handling a 1.39 GB image. With Docker Private Registry, it
took 122 s, 20 s faster than without Docker Private Registry.

For reducing the workload of creating images, we developed an auto-scaling sched-
uler with three workers implemented in a group for our platform. We applied this custom
algorithm to compare the waiting time of each task with and without cases. With one
worker, the second task must wait for the previous task until it is completed. The third
task must wait for 2059 s, which is almost twice the first waiting time. For the fourth task
in a queue, it will wait for 3083 s, requiring 6166 s in total as a waiting time. With this auto-
scaling algorithm, three workers will work in parallel, so only 1080 s are needed for the
fourth task; thus the total waiting time required is only 1200 s.

5.3. Auto-Provisioning
Automatic provisioning of resources is an integral part of our platform. In a container-

ized environment for the HPC cloud, the provisioning process of resources requires not only
an image and a container but also their applications. More specifically, provisioning of a job
in application units is needed rather than in container units. To solve this problem, we eval-
uated the auto-provisioning of image and job resources by making their life cycles.

Figure 17 shows the auto-provisioning life cycle of the image process. Once users re-
quest to build an image, configurations for image creation are verified and the state will be
Creating. After image creation is complete, the state changes to Created and the image is
automatically uploaded to Docker Private Registry or the shared file system. In this process,
the image status is displayed as Uploading. Once it is uploaded, the state changes to Up-
loaded. If an error occurs during Creating, Uploading, and Deleting states, it is automati-
cally displayed as the Down state. Images in the states of Created, Uploaded, and Down can
be deleted, and these deleted images are automatically expunged in the repository.

Figure 16. Resource usage.

For reducing the workload of creating images, we developed an auto-scaling scheduler
with three workers implemented in a group for our platform. We applied this custom
algorithm to compare the waiting time of each task with and without cases. With one
worker, the second task must wait for the previous task until it is completed. The third
task must wait for 2059 s, which is almost twice the first waiting time. For the fourth task
in a queue, it will wait for 3083 s, requiring 6166 s in total as a waiting time. With this
auto-scaling algorithm, three workers will work in parallel, so only 1080 s are needed for
the fourth task; thus the total waiting time required is only 1200 s.

5.3. Auto-Provisioning

Automatic provisioning of resources is an integral part of our platform. In a container-
ized environment for the HPC cloud, the provisioning process of resources requires not
only an image and a container but also their applications. More specifically, provisioning
of a job in application units is needed rather than in container units. To solve this problem,
we evaluated the auto-provisioning of image and job resources by making their life cycles.

Figure 17 shows the auto-provisioning life cycle of the image process. Once users
request to build an image, configurations for image creation are verified and the state
will be Creating. After image creation is complete, the state changes to Created and the
image is automatically uploaded to Docker Private Registry or the shared file system. In
this process, the image status is displayed as Uploading. Once it is uploaded, the state
changes to Uploaded. If an error occurs during Creating, Uploading, and Deleting states, it
is automatically displayed as the Down state. Images in the states of Created, Uploaded,
and Down can be deleted, and these deleted images are automatically expunged in the
repository.

www.manaraa.com

Appl. Sci. 2021, 11, 923 18 of 28Appl. Sci. 2021, 11, x FOR PEER REVIEW 18 of 27

Figure 17. Auto-provisioning life cycle of the image process.

Figure 18 shows the auto-provisioning life cycle of the job process. Once users submit a
job, containers are executed using a private or a shared image. In this process, the state changes
from Building to Creating. After the creation is complete, the application is executed by chang-
ing to the Created state and then automatically going to the Running state. If the application
execution is finished, the daemon of the job is automatically updated to the Finished state to
complete the operation. Then, allocated resources are automatically released with expunging
the container, including applications in the Expunged state. Jobs can be deleted in the states
of Created, Running, Finished, and Down. If a forced request for resource release is received,
the state shows Expunged, and then the allocated resource is released.

Figure 18. Auto-provisioning life cycle of the job process.

5.4. Workload Management
There are three workloads considered in our platform: image task, container execu-

tion, and application execution. Distributing and parallelizing workloads for image tasks
are implemented by defining each client, task queue, and worker with Celery as a distrib-
uted framework and Redis as a message broker. Workloads for container and application
execution are handled using an existing batch scheduler. We evaluated for managing

Figure 17. Auto-provisioning life cycle of the image process.

Figure 18 shows the auto-provisioning life cycle of the job process. Once users submit
a job, containers are executed using a private or a shared image. In this process, the
state changes from Building to Creating. After the creation is complete, the application is
executed by changing to the Created state and then automatically going to the Running
state. If the application execution is finished, the daemon of the job is automatically updated
to the Finished state to complete the operation. Then, allocated resources are automatically
released with expunging the container, including applications in the Expunged state. Jobs
can be deleted in the states of Created, Running, Finished, and Down. If a forced request
for resource release is received, the state shows Expunged, and then the allocated resource
is released.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 18 of 27

Figure 17. Auto-provisioning life cycle of the image process.

Figure 18 shows the auto-provisioning life cycle of the job process. Once users submit a
job, containers are executed using a private or a shared image. In this process, the state changes
from Building to Creating. After the creation is complete, the application is executed by chang-
ing to the Created state and then automatically going to the Running state. If the application
execution is finished, the daemon of the job is automatically updated to the Finished state to
complete the operation. Then, allocated resources are automatically released with expunging
the container, including applications in the Expunged state. Jobs can be deleted in the states
of Created, Running, Finished, and Down. If a forced request for resource release is received,
the state shows Expunged, and then the allocated resource is released.

Figure 18. Auto-provisioning life cycle of the job process.

5.4. Workload Management
There are three workloads considered in our platform: image task, container execu-

tion, and application execution. Distributing and parallelizing workloads for image tasks
are implemented by defining each client, task queue, and worker with Celery as a distrib-
uted framework and Redis as a message broker. Workloads for container and application
execution are handled using an existing batch scheduler. We evaluated for managing

Figure 18. Auto-provisioning life cycle of the job process.

www.manaraa.com

Appl. Sci. 2021, 11, 923 19 of 28

5.4. Workload Management

There are three workloads considered in our platform: image task, container execution,
and application execution. Distributing and parallelizing workloads for image tasks are
implemented by defining each client, task queue, and worker with Celery as a distributed
framework and Redis as a message broker. Workloads for container and application
execution are handled using an existing batch scheduler. We evaluated for managing these
workloads by integrating some commands of the container scheduler (Kubernetes) and
the batch scheduler (PBSPro). Figure 19 shows the resource monitoring, which includes
information about containers and batch jobs using the plsicloud my_resouce command.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 19 of 27

these workloads by integrating some commands of the container scheduler (Kubernetes)
and the batch scheduler (PBSPro). Figure 19 shows the resource monitoring, which in-
cludes information about containers and batch jobs using the plsicloud my_resouce com-
mand.

Figure 19. Resource monitoring information about containers and batch jobs.

5.5. Multitenancy
Multitenancy means that the provider’s computing resources are pooled to serve

multiple consumers assigned and reassigned to consumer demand [20]. In our platform,
we provided the isolated environment to each user with shared resource pools. Figure 20
shows the concept of the multitenancy implemented in our platform. Image metadata and
job metadata are stored in the two different types of databases—MySQL and NoSQL—
according to the data characteristics of the resources. We can use PLSICLOUD to obtain
the information sent to the service by each user. The development of the PLSICLOUD CLI
tool allows evaluation of the cloud multitenancy model.

Figure 20. Multitenancy concept implemented in our platform.

5.6. Portability of Applications
We evaluated the portability of applications by providing containerized applications.

We verified containerization of frequently used container versions, OS versions, and com-
pilers dependent on parallel libraries to meet the requirements of users, as shown in Table
4. We tested serviceability through the containerizing HPL task, a benchmark tool that

Figure 19. Resource monitoring information about containers and batch jobs.

5.5. Multitenancy

Multitenancy means that the provider’s computing resources are pooled to serve
multiple consumers assigned and reassigned to consumer demand [20]. In our plat-
form, we provided the isolated environment to each user with shared resource pools.
Figure 20 shows the concept of the multitenancy implemented in our platform. Image
metadata and job metadata are stored in the two different types of databases—MySQL
and NoSQL—according to the data characteristics of the resources. We can use PLSI-
CLOUD to obtain the information sent to the service by each user. The development of the
PLSICLOUD CLI tool allows evaluation of the cloud multitenancy model.

5.6. Portability of Applications

We evaluated the portability of applications by providing containerized applications.
We verified containerization of frequently used container versions, OS versions, and
compilers dependent on parallel libraries to meet the requirements of users, as shown in
Table 4. We tested serviceability through the containerizing HPL task, a benchmark tool
that tests HPC system performance and that is installed automatically from the OS to the
application based on our templates [21]. Currently, our system supports Docker v17.06.1-ce
and stable Singularity v2.2, along with CentOS 6.8 and 7.2; OpenMPI provides v1.10.6
and v2.0.2. Each of them contributes to a mathematical library GotoBLAS2 based on a
parallel library.

www.manaraa.com

Appl. Sci. 2021, 11, 923 20 of 28

Appl. Sci. 2021, 11, x FOR PEER REVIEW 19 of 27

these workloads by integrating some commands of the container scheduler (Kubernetes)
and the batch scheduler (PBSPro). Figure 19 shows the resource monitoring, which in-
cludes information about containers and batch jobs using the plsicloud my_resouce com-
mand.

Figure 19. Resource monitoring information about containers and batch jobs.

5.5. Multitenancy
Multitenancy means that the provider’s computing resources are pooled to serve

multiple consumers assigned and reassigned to consumer demand [20]. In our platform,
we provided the isolated environment to each user with shared resource pools. Figure 20
shows the concept of the multitenancy implemented in our platform. Image metadata and
job metadata are stored in the two different types of databases—MySQL and NoSQL—
according to the data characteristics of the resources. We can use PLSICLOUD to obtain
the information sent to the service by each user. The development of the PLSICLOUD CLI
tool allows evaluation of the cloud multitenancy model.

Figure 20. Multitenancy concept implemented in our platform.

5.6. Portability of Applications
We evaluated the portability of applications by providing containerized applications.

We verified containerization of frequently used container versions, OS versions, and com-
pilers dependent on parallel libraries to meet the requirements of users, as shown in Table
4. We tested serviceability through the containerizing HPL task, a benchmark tool that

Figure 20. Multitenancy concept implemented in our platform.

Table 4. Template of containerized applications.

Container OS Library Parallel Library Application
Library Application

Docker 17.06.1c-e /
Singularity 2.2

CentOS 6.8

gcc

OpenMPI
1.10.6gcc, Development Tools GotoBLAS 2-1.13 HPL 2.2

gcc
2.0.2gcc, Development Tools GotoBLAS 2-1.13 HPL 2.2

CentOS 7.2

gcc

OpenMPI
1.10.6gcc, Development Tools GotoBLAS 2-1.13 HPL 2.2

gcc
2.0.2gcc, Development GotoBLAS 2-1.13 HPL 2.2

5.7. Performance Evaluation with MPI Tests

We constructed two nodes for running point-to-point MPI parallel tasks to check
different types of bandwidth and latency with the benchmark tool osu-micro-benchmarks
v5.4 [22]. The latency test mainly measures the latency caused by sending and receiving
messages by data size between two nodes using the ping-pong test. The test results of
latency between two nodes with bare-metal, singularity, and docker-calico are almost the
same and will be not mentioned in this paper [21]. The test results of bandwidth (Figure 21)
include bandwidth, bi-directional bandwidth, and multiple-bandwidth tests. As shown in
the figure, the peak bandwidth exists in a certain message size interval. This interval is
almost the same in three cases of bare-metal, singularity, and docker-calico, except for the
instability of docker-calico.

Results between the two nodes are insufficient to evaluate the performance of the
container-based HPC platform in an HPC environment. Therefore, we constructed 8 nodes
with 16, 32, 64, and 72 cores for measuring the latency test with various MPI blocking col-
lective operations (barrier in Figure 22, gather in Figure A1, all-gather in Figure A2, reduce
in Figure A3, all-reduce in Figure A4, reduce-scatter in Figure A5, scatter in Figure A6,
all-to-all in Figure A7, and broadcast in Figure 23 using the same benchmark tool osu-
micro-benchmarks.

www.manaraa.com

Appl. Sci. 2021, 11, 923 21 of 28

Appl. Sci. 2021, 11, x FOR PEER REVIEW 20 of 27

tests HPC system performance and that is installed automatically from the OS to the ap-
plication based on our templates [21]. Currently, our system supports Docker v17.06.1-ce
and stable Singularity v2.2, along with CentOS 6.8 and 7.2; OpenMPI provides v1.10.6 and
v2.0.2. Each of them contributes to a mathematical library GotoBLAS2 based on a parallel
library.

Table 4. Template of containerized applications.

Container OS Library Parallel Library Application Library Application

Docker 17.06.1-ce /
Singularity 2.2

CentOS 6.8

gcc

OpenMPI

1.10.6

gcc, Development Tools GotoBLAS 2-1.13 HPL 2.2

gcc
2.0.2

gcc, Development Tools GotoBLAS 2-1.13 HPL 2.2

CentOS 7.2

gcc

OpenMPI

1.10.6

gcc, Development Tools GotoBLAS 2-1.13 HPL 2.2

gcc
2.0.2

gcc, Development GotoBLAS 2-1.13 HPL 2.2

5.7. Performance Evaluation with MPI Tests
We constructed two nodes for running point-to-point MPI parallel tasks to check dif-

ferent types of bandwidth and latency with the benchmark tool osu-micro-benchmarks
v5.4 [22]. The latency test mainly measures the latency caused by sending and receiving
messages by data size between two nodes using the ping-pong test. The test results of
latency between two nodes with bare-metal, singularity, and docker-calico are almost the
same and will be not mentioned in this paper [21]. The test results of bandwidth (Figure
21) include bandwidth, bi-directional bandwidth, and multiple-bandwidth tests. As
shown in the figure, the peak bandwidth exists in a certain message size interval. This
interval is almost the same in three cases of bare-metal, singularity, and docker-calico,
except for the instability of docker-calico.

Figure 21. MPI bandwidth includes (a) MPI Bandwidth, (b) MPI BI Bandwidth, and (c) MPI Multi
Bandwidth.
Figure 21. MPI bandwidth includes (a) MPI Bandwidth, (b) MPI BI Bandwidth, and (c) MPI Multi
Bandwidth.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 21 of 27

Results between the two nodes are insufficient to evaluate the performance of the
container-based HPC platform in an HPC environment. Therefore, we constructed 8
nodes with 16, 32, 64, and 72 cores for measuring the latency test with various MPI block-
ing collective operations (barrier in Figure 22, gather in Figure A1, all-gather in Figure A2,
reduce in Figure A3, all-reduce in Figure A4, reduce-scatter in Figure A5, scatter in Figure
A6, all-to-all in Figure A7, and broadcast in Figure 23 using the same benchmark tool osu-
micro-benchmarks.

Figure 22. MPI barrier latency.

In Figure 22, the barrier latency of singularity shows almost the same performance with
the bare-metal case except with 64 cores. The value of docker-calico shows a performance
gap between singularity and bare-metal. For the remaining operations, as the number of
cores increases in the same number of nodes, the performance results are almost the same
with bare-metal, singularity, and docker-calico when looking at the overall graph change.
However, in Figure 23, the results of docker-calico in a particular interval are worse than
the other two cases in a specific message size range.

Figure 23. MPI broadcast latency with (a) 16 cores, (b) 32 cores, (c) 64 cores, and (d) 72 cores.

Figure 22. MPI barrier latency.

www.manaraa.com

Appl. Sci. 2021, 11, 923 22 of 28

Appl. Sci. 2021, 11, x FOR PEER REVIEW 21 of 27

Results between the two nodes are insufficient to evaluate the performance of the
container-based HPC platform in an HPC environment. Therefore, we constructed 8
nodes with 16, 32, 64, and 72 cores for measuring the latency test with various MPI block-
ing collective operations (barrier in Figure 22, gather in Figure A1, all-gather in Figure A2,
reduce in Figure A3, all-reduce in Figure A4, reduce-scatter in Figure A5, scatter in Figure
A6, all-to-all in Figure A7, and broadcast in Figure 23 using the same benchmark tool osu-
micro-benchmarks.

Figure 22. MPI barrier latency.

In Figure 22, the barrier latency of singularity shows almost the same performance with
the bare-metal case except with 64 cores. The value of docker-calico shows a performance
gap between singularity and bare-metal. For the remaining operations, as the number of
cores increases in the same number of nodes, the performance results are almost the same
with bare-metal, singularity, and docker-calico when looking at the overall graph change.
However, in Figure 23, the results of docker-calico in a particular interval are worse than
the other two cases in a specific message size range.

Figure 23. MPI broadcast latency with (a) 16 cores, (b) 32 cores, (c) 64 cores, and (d) 72 cores. Figure 23. MPI broadcast latency with (a) 16 cores, (b) 32 cores, (c) 64 cores, and (d) 72 cores.

In Figure 22, the barrier latency of singularity shows almost the same performance with
the bare-metal case except with 64 cores. The value of docker-calico shows a performance
gap between singularity and bare-metal. For the remaining operations, as the number of
cores increases in the same number of nodes, the performance results are almost the same
with bare-metal, singularity, and docker-calico when looking at the overall graph change.
However, in Figure 23, the results of docker-calico in a particular interval are worse than
the other two cases in a specific message size range.

6. Conclusions and Future Work

The container-based approach to the HPC cloud is expected to ensure efficient man-
agement and use of supercomputing resources, which are areas that present challenges in
the HPC field. This study demonstrates the value of technology convergence by attempting
to provide users with a single cloud environment through integration with container-based
technology and traditional HPC resource management technology. It provides container-
based solutions to the problems of HPC users and administrators, and these can be of
practical assistance in resolving issues such as complexity, compatibility, application expan-
sion, pay-as-used billing management, cost, flexibility, scalability, workload management,
and portability.

The deployment of a container-based HPC cloud platform is still a challenging task.
Thus far, our proposed architecture has set and used measurement values for various
resources by mainly considering KISTI’s computer-intensive HPC jobs. In future work,
we must consider HTC jobs, network-intensive jobs, and GPU-intensive jobs, especially
for machine learning or deep learning applications, and add measurement values for new
resources that satisfy the characteristics of these jobs. Another potential research task is
to automate the process of creating and evaluating templates for HPC service providers
as service creators. In our platform, there is not enough generalization in the degree

www.manaraa.com

Appl. Sci. 2021, 11, 923 23 of 28

of automation to conform with the application characteristics realized whenever a new
template is added.

In the current job integration management part, additional development is required for
the batch scheduler for general jobs and other interworking for Kubernetes with container
jobs. In our platform, the user cannot access the container directly. Container creation,
execution, application execution, and container deletion are all automated. However, it is
possible to solve this issue by developing a linked package for the Application Program-
ming Interface (API) of the existing Kubernetes and batch job schedulers; these will be
connected to the machine on which the job is running, while submitting the job according
to the user’s requirements. The evaluation of our platform was conducted in a small cluster
environment. If we apply our platform to a large cluster environment, future evaluations
of availability, deployment efficiency, and execution efficiency would be needed. We hope
that our proposed architecture will contribute to the widespread deployment and use of
future container-based HPC cloud services.

Author Contributions: Conceptualization, G.L. and J.W.; methodology, G.L. and S.B.L.; software,
G.L.; validation, J.W.; formal analysis, G.L.; resources, J.W.; writing-original draft preparation, G.L.;
writing—review and editing, G.L. and S.B.L.; supervision, S.B.L.; project administration, J.W. All
authors have read and agreed to the published version of the manuscript.

Funding: This research has been performed as a subproject of Project No. K-21-L02-C01-S01 (The
National Supercomputing Infrastructure Construction and Service) supported by the KOREA INSTI-
TUTE of SCIENCE and TECHNOLOGY INFORMATION (KISTI).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: No new data were created or analyzed in this study. Data sharing is
not applicable to this article.

Acknowledgments: This study was performed as a subproject of the KISTI project entitled the
National Supercomputing Infrastructure Construction and Service.

Conflicts of Interest: This manuscript has not been published or presented elsewhere in part or in
entirety and is not under consideration by another journal. We have read and understood your
journal’s policies, and we believe that neither the manuscript nor the study violates any of these.
There are no conflict of interest to declare.

Appendix A

Appl. Sci. 2021, 11, x FOR PEER REVIEW 23 of 27

Appendix A

Figure A1. MPI gather latency with (a) 16 cores, (b) 32 cores, (c) 64 cores, and (d) 72 cores.

Figure A2. MPI all-gather latency with (a) 16 cores, (b) 32 cores, (c) 64 cores, and (d) 72 cores.

Figure A1. Cont.

www.manaraa.com

Appl. Sci. 2021, 11, 923 24 of 28

Appl. Sci. 2021, 11, x FOR PEER REVIEW 23 of 27

Appendix A

Figure A1. MPI gather latency with (a) 16 cores, (b) 32 cores, (c) 64 cores, and (d) 72 cores.

Figure A2. MPI all-gather latency with (a) 16 cores, (b) 32 cores, (c) 64 cores, and (d) 72 cores.

Figure A1. MPI gather latency with (a) 16 cores, (b) 32 cores, (c) 64 cores, and (d) 72 cores.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 23 of 27

Appendix A

Figure A1. MPI gather latency with (a) 16 cores, (b) 32 cores, (c) 64 cores, and (d) 72 cores.

Figure A2. MPI all-gather latency with (a) 16 cores, (b) 32 cores, (c) 64 cores, and (d) 72 cores. Figure A2. MPI all-gather latency with (a) 16 cores, (b) 32 cores, (c) 64 cores, and (d) 72 cores.

www.manaraa.com

Appl. Sci. 2021, 11, 923 25 of 28Appl. Sci. 2021, 11, x FOR PEER REVIEW 24 of 27

Figure A3. MPI reduce latency with (a) 16 cores, (b) 32 cores, (c) 64 cores, and (d) 72 cores.

Figure A4. MPI all-reduce latency with (a) 16 cores, (b) 32 cores, (c) 64 cores, and (d) 72 cores.

Figure A3. MPI reduce latency with (a) 16 cores, (b) 32 cores, (c) 64 cores, and (d) 72 cores.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 24 of 27

Figure A3. MPI reduce latency with (a) 16 cores, (b) 32 cores, (c) 64 cores, and (d) 72 cores.

Figure A4. MPI all-reduce latency with (a) 16 cores, (b) 32 cores, (c) 64 cores, and (d) 72 cores. Figure A4. MPI all-reduce latency with (a) 16 cores, (b) 32 cores, (c) 64 cores, and (d) 72 cores.

www.manaraa.com

Appl. Sci. 2021, 11, 923 26 of 28Appl. Sci. 2021, 11, x FOR PEER REVIEW 25 of 27

Figure A5. MPI reduce-scatter latency with (a) 16 cores, (b) 32 cores, (c) 64 cores, and (d) 72 cores.

Figure A6. MPI scatter latency with (a) 16 cores, (b) 32 cores, (c) 64 cores, and (d) 72 cores.

Figure A5. MPI reduce-scatter latency with (a) 16 cores, (b) 32 cores, (c) 64 cores, and (d) 72 cores.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 25 of 27

Figure A5. MPI reduce-scatter latency with (a) 16 cores, (b) 32 cores, (c) 64 cores, and (d) 72 cores.

Figure A6. MPI scatter latency with (a) 16 cores, (b) 32 cores, (c) 64 cores, and (d) 72 cores. Figure A6. MPI scatter latency with (a) 16 cores, (b) 32 cores, (c) 64 cores, and (d) 72 cores.

www.manaraa.com

Appl. Sci. 2021, 11, 923 27 of 28
Appl. Sci. 2021, 11, x FOR PEER REVIEW 26 of 27

Figure A7. MPI all-to-all latency with (a) 16 cores, (b) 32 cores, (c) 64 cores, and (d) 72 cores.

References
1. Joseph, E.; Conway, S.; Sorensen, B. High Performance Computing in the EU: Progress on the Implementation of the European HPC

Strategy; European Commission: Brussels, Belgium, 2014.
2. Fusi, M.; Mazzocchetti, F.; Farrés, A.; Kosmidis, L.; Canal, R.; Cazorla, F.J.; Abella, J. On the Use of Probabilistic Worst-Case

Execution Time Estimation for Parallel Applications in High Performance Systems. Mathematics 2020, 8, 314,
doi:10.3390/math8030314.

3. Smirnov, S.; Sukhoroslov, O.; Voloshinov, V. Using Resources of Supercomputing Centers with Everest Platform. In Proceed-
ings of the 4th Russian Supercomputing Days, Moscow, Russia, 24–25 September 2018; pp. 687–698.

4. Fienen, M.N.; Hunt, R.J. High-Throughput Computing Versus High-Performance Computing for Groundwater Applications.
Ground Water 2015, 53, 180–184, doi:10.1111/gwat.12320.

5. Raicu, I.; Foster, I.T.; Zhao, Y. Many-task computing for grids and supercomputers. In Proceedings of the 2008 Workshop on
Many-Task Computing on Grids and Supercomputers, Austin, TX, USA, 17 November 2008; pp. 1–11.

6. Balakrishnan, S.R.; Veeramani, S.; Leong, J.A.; Murray, I.; Sidhu, A.S. High Performance Computing on the Cloud via
HPC+Cloud software framework. In Proceedings of the 2016 Fifth International Conference on Eco-Friendly Computing and
Communication Systems (ICECCS), Bhopal, India, 8–9 December 2016; pp. 48–52.

7. Jamalian, S.; Rajaei, H. ASETS: A SDN Empowered Task Scheduling System for HPCaaS on the Cloud. In Proceedings of the
2015 IEEE International Conference on Cloud Engineering, Tempe, AZ, USA, 9–13 March 2015; pp. 329–334.

8. Shanmugalingam, S.; Ksentini, A.; Bertin, P. DPDK Open vSwitch performance validation with mirroring feature. In Proceed-
ings of the 2016 23rd International Conference on Telecommunications (ICT), Thessaloniki, Greece, 16–18 May 2016; pp. 1–6.

9. Gerhardt, L.; Bhimji, W.; Canon, S.; Fasel, M.; Jacobsen, D.; Mustafa, M.; Porter, J.; Tsulaia, V. Shifter: Containers for HPC. J.
Phys. Conf. Ser. 2017, 898, 082021, doi:10.1088/1742-6596/898/8/082021.

10. Benedicic, L.; Cruz, F.A.; Madonna, A.; Mariotti, K. Sarus: Highly Scalable Docker Containers for HPC Systems. In Mining Data
for Financial Applications; Springer Nature: Cham, Switzerland, 2019; pp. 46–60.

11. Höb, M.; Kranzlmüller, D. Enabling EASEY Deployment of Containerized Applications for Future HPC Systems. In Mining
Data for Financial Applications; Springer Nature: Cham, Switzerland, 2020; Volume 12137, pp. 206–219.

12. Miesch, M. JEDI to Go: High-Performance Containers for Earth System Prediction. In Proceedings of the JEDI Academy, Boul-
der, CO, USA, 10–13 June 2019.

13. Woo, J.; Jang, J.H.; Hong, T. Performance Analysis of Data Network at the PLSI Global File System. In Proceedings of the Korea
Processing Society Conference; Korea Institute of Science and Technology Information: Daejeon, Korea, 2017, pp. 71–72,
doi.org/10.3745/PKIPS.Y2017M04A.71.

Figure A7. MPI all-to-all latency with (a) 16 cores, (b) 32 cores, (c) 64 cores, and (d) 72 cores.

References
1. Joseph, E.; Conway, S.; Sorensen, B. High Performance Computing in the EU: Progress on the Implementation of the European HPC

Strategy; European Commission: Brussels, Belgium, 2014.
2. Fusi, M.; Mazzocchetti, F.; Farrés, A.; Kosmidis, L.; Canal, R.; Cazorla, F.J.; Abella, J. On the Use of Probabilistic Worst-Case

Execution Time Estimation for Parallel Applications in High Performance Systems. Mathematics 2020, 8, 314. [CrossRef]
3. Smirnov, S.; Sukhoroslov, O.; Voloshinov, V. Using Resources of Supercomputing Centers with Everest Platform. In Proceedings

of the 4th Russian Supercomputing Days, Moscow, Russia, 24–25 September 2018; pp. 687–698.
4. Fienen, M.N.; Hunt, R.J. High-Throughput Computing Versus High-Performance Computing for Groundwater Applications.

Ground Water 2015, 53, 180–184. [CrossRef] [PubMed]
5. Raicu, I.; Foster, I.T.; Zhao, Y. Many-task computing for grids and supercomputers. In Proceedings of the 2008 Workshop on

Many-Task Computing on Grids and Supercomputers, Austin, TX, USA, 17 November 2008; pp. 1–11.
6. Balakrishnan, S.R.; Veeramani, S.; Leong, J.A.; Murray, I.; Sidhu, A.S. High Performance Computing on the Cloud via HPC+Cloud

software framework. In Proceedings of the 2016 Fifth International Conference on Eco-Friendly Computing and Communication
Systems (ICECCS), Bhopal, India, 8–9 December 2016; pp. 48–52.

7. Jamalian, S.; Rajaei, H. ASETS: A SDN Empowered Task Scheduling System for HPCaaS on the Cloud. In Proceedings of the 2015
IEEE International Conference on Cloud Engineering, Tempe, AZ, USA, 9–13 March 2015; pp. 329–334.

8. Shanmugalingam, S.; Ksentini, A.; Bertin, P. DPDK Open vSwitch performance validation with mirroring feature. In Proceedings
of the 2016 23rd International Conference on Telecommunications (ICT), Thessaloniki, Greece, 16–18 May 2016; pp. 1–6.

9. Gerhardt, L.; Bhimji, W.; Canon, S.; Fasel, M.; Jacobsen, D.; Mustafa, M.; Porter, J.; Tsulaia, V. Shifter: Containers for HPC. J. Phys.
Conf. Ser. 2017, 898, 082021. [CrossRef]

10. Benedicic, L.; Cruz, F.A.; Madonna, A.; Mariotti, K. Sarus: Highly Scalable Docker Containers for HPC Systems. In Mining Data
for Financial Applications; Springer Nature: Cham, Switzerland, 2019; pp. 46–60.

http://doi.org/10.3390/math8030314
http://doi.org/10.1111/gwat.12320
http://www.ncbi.nlm.nih.gov/pubmed/25644169
http://doi.org/10.1088/1742-6596/898/8/082021

www.manaraa.com

Appl. Sci. 2021, 11, 923 28 of 28

11. Höb, M.; Kranzlmüller, D. Enabling EASEY Deployment of Containerized Applications for Future HPC Systems. In Mining Data
for Financial Applications; Springer Nature: Cham, Switzerland, 2020; Volume 12137, pp. 206–219.

12. Miesch, M. JEDI to Go: High-Performance Containers for Earth System Prediction. In Proceedings of the JEDI Academy, Boulder,
CO, USA, 10–13 June 2019.

13. Woo, J.; Jang, J.H.; Hong, T. Performance Analysis of Data Network at the PLSI Global File System. In Proceedings of the
Korea Processing Society Conference; Korea Institute of Science and Technology Information: Daejeon, Korea, 2017; pp. 71–72.

14. Piras, M.E.; Pireddu, L.; Moro, M.; Zanetti, G. Container Orchestration on HPC Clusters. Min. Data Financ. Appl. 2019, 11887, 25–35.
15. Hu, G.; Zhang, Y.; Chen, W. Exploring the Performance of Singularity for High Performance Computing Scenarios. In Proceedings

of the 2019 IEEE 21st International Conference on High Performance Computing and Communications, IEEE 17th International
Conference on Smart City, IEEE 5th International Conference on Data Science and Systems (HPCC/SmartCity/DSS), Zhangjiajie,
China, 10–12 August 2019; pp. 2587–2593.

16. Priedhorsky, R.; Randles, T. Charliecloud. In Proceedings of the International Conference on High Performance Computing,
Networking, Storage and Analysis, Denver, CO, USA, 12–17 November 2017; p. 36.

17. Aragon, C.; Dernat, R.; Sanabria, J. Performance Evaluation of Container-based Virtualization for High Performance Computing
Environments. arXiv 2017, arXiv:1709.10140.

18. Benedicic, L.; Cruz, F.A.; Schulthess, T.C.; Jacobsen, D. Shifter: Fast and Consistent HPC Workflows Using Containers; Cray User
Group (CUG): Redmond, WA, USA, 11 May 2017.

19. Madonna, A.; Benedicic, L.; Cruz, F.A.; Mariotti, K. Shifter at CSCS-Docker Containers for HPC. In Proceedings of the HPC
Advisory Council Swiss Conference, Lugano, Switzerland, 9–12 April 2018.

20. Mell, P.; Grance, T. The NIST Definition of Cloud Computing, in Recommendations of the National Institute of Standards and
Technology. Technical Report, Special Publication 800-145. September 2011. Available online: https://nvlpubs.nist.gov/nistpubs/
Legacy/SP/nistspecialpublication800-145.pdf (accessed on 20 January 2021).

21. Lim, S.B.; Woo, J.; Li, G. Performance analysis of container-based networking solutions for high-performance computing cloud.
Int. J. Electr. Comput. Eng. (IJECE) 2020, 10, 1507–1514. [CrossRef]

22. Bureddy, D.; Wang, H.; Venkatesh, A.; Potluri, S.; Panda, D.K. OMB-GPU: A Micro-Benchmark Suite for Evaluating MPI Li-braries
on GPU Clusters. In Proceedings of the EuroMPI 2012 Confierence, Vienna, Austria, 23–26 September 2012; pp. 110–120.

https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-145.pdf
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-145.pdf
http://doi.org/10.11591/ijece.v10i2.pp1507-1514

www.manaraa.com

Reproduced with permission of copyright owner. Further reproduction
prohibited without permission.

	Introduction
	Related Work
	Container Solutions
	Docker
	Singularity
	Charliecloud

	Container-Based HPC Cloud Solutions
	Shifter
	Sarus
	EASEY
	JEDI

	Requirements of the HPC Workflow in a Containerized Environment

	Platform Design
	Architecture
	Image Management
	Job Management

	Platform Implementation
	Evaluation
	On-Demand Self-Service
	Rapid Elasticity and Scalability
	Auto-Provisioning
	Workload Management
	Multitenancy
	Portability of Applications
	Performance Evaluation with MPI Tests

	Conclusions and Future Work
	
	References

